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Abstract The multifhcctal properties of electronic eigenstates at the metal-insulator vansition 
of a two-dimensional disordered tight-binding model with spin*@ interaction are investigated 
numerically. The camlation dimensions ofthe spectral m-sure & and of the fractal eigenstate 
Dz am calculated and shown to be related by D2 = 2Da. The exponent q = 0.35 f 0.05 
describing the energy correlations of the critical eigenstates is found to satisfy the relarion 
q = 2 - & ,  

Electronic states in disordered systems are known to be either localized or extended. At 
T = 0 the so-called mobility edge separates insulating (localized) from current-camying 
(extended) states, Recently, the electronic properties directly at the critical point have 
received increasing attention [l,  2, 3, 4, 5, 61. Two-dimensional (2d) systems are very 
well suited for numerical investigations of the eleclronic eigenstates at a critical point. The 
only systems, however, that exhibit a complete Anderson transition in 2d are models with 
symplectic symmetry. This is in contrast to the orthogonal and the unitary case where 
all states are localized (weak localization) and the quantum Hall (QHE) systems where 
only localized states with a diverging localization length at some singular energies can be 
observed. 

In a recent paper, Chalker and co-workers [7] reported on numerical investigations 
of eigenstate fluctuations and correlations near the mobility edge of a two-dimensional 
tight-binding model with spin-orbit coupling. It was found that the probability amplitude 
distribution exhibits multifiactal behaviour which can be chamcterized by a set of 
generalized dimensions Dq. The fractal spatial structure of the wavefunctions also shows 
up in the eigenfunction correlations between states close in energy. A similar behaviour 
was found also in the quantum Hall model [ l ,  8, 9, IO], i.e. a two-dimensional disordered 
system of non-interacting electrons where a strong magnetic field causes the localization 
length to diverge at the centres of the Landau bands with a universal exponent [ll].  For 
these critical states, characteristic quantities like the generalized correlation dimension of 
the wavefunction DZ = 1.62 [8, 91, the corresponding generalized dimension of the spectral 
measure Dz = 0.81 131, the exponent q = 0.38 [l, 31 governing the energy eigenfunction 
correlations, and cy0 = 2.3 [9, 101 which for -1 5 g 5 1 determines the so-called f(or)- 
distribution are known, partly with sufficient precision. This is, however, not the case for the 
spin-orbit system mentioned above, mainly because of the small system sizes considered so 
far ( M  < 18a) [7]. The authors of [7] used a model proposed by Evangelou and Ziman [12] 
which represents a two-dimensional disordered electronic system with spin-orbit interaction. 

In this letter, a different lattice model with symplectic symmetry is investigated for 
system sizes up to 150a x 150a, where a is the lattice constant. It is found that 
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Dz = 1.66 & 0.05, 52 = 0.83 f 0.03, 7 = 0.35 jl0.05, and 010 = 2.19 jl 0.03. The, 
within the numerical uncertainties, the proposed relations 7 = 2 - DZ [13, 91, DZ = 202 
[3], and AFT = (010 - 2)-l [I41 hold also for the two-dimensional system with spin-orbit 
interaction. 

The model used to calculate the eigenstates has been put forward by Ando [15, 161 
to simulate two-dimensional systems in n-channel inversion layers on surfaces of In-VI 
semiconductors. The Hamiltonian describing this situation is 

t with disorder potentials E,, creation c,,. and annihilation c , , ~  operators of a particle 
at site m and spin state U ,  respectively. The transfer matrix elements V(m.  U ;  n .  U' )  = 
uu' V(n.  -U': m, - U )  which are restricted to nearest neighbours only depend on whether 
the transfer from site m to one of the nearest neighbours n goes along the x -  or the 
y-direction. The strength of the spin-orbit interaction is determined by the parameter 
S = Vz /V ,  with V = (V: + V2)1/z taken to be the unit of energy, where VI  and Vz are 
the matrix elements for transitions with and without spin-flip, respectively. V(m,  U ;  nu') is 
then given by 

Iu=+l i= (  :,) l o = - l ) = (  Y ) .  
The localization properties of symplectic models have previously been analysed numerically 
[12, 15, 16, 17, 18, 19, U)] from which a metal-insulator transition can be inferred. The 
most recent calculations of Fastemath [20, 211 report a critical exponent v = 2.75 for 
the localization length at the band centre, E / V  = 0, together with a critical disorder 
W, = 5.74 V for a constant probability distribution of the on-site disorder potentials {E,) 

and a spin-orbit strength S = 0.5. We also take these parameters in what follows so that 
our new results supplement the already published data The eigenvalues and eigenstates 
were calculated numerically by means of a Lanczos algorithm for systems of size up to 
L = 150a with periodic boundary conditions applied in both directions. 

The stmcture of the eigenstates is analysed in terms of the f(a)-distribution [22, 231 
which completely characterizes the spatial scaling behaviour of the q-moments of the 
wavefunction. In figure 1 the f(ar)-distribution for a particular eigenstate from the critical 
region near the centre of the tight-binding band ( E  = O V )  and a disorder strength 
W = 5.74 V is shown for several q-values. For comparison the corresponding parabolic 
approximation [24, 141 is also shown. The average over 190 eigenstates taken from the 
energy interval [-0.15,O.Ol gives a value of 010 = 2.19f0.03. This number represents the 
most probable value of the scaling exponents 0 1 ~  = (d/dq)(q - I)D,,. 

Using the box-probability method the correlation dimension DZ of the multifractal 
eigenstates is obtained from the scaling of the second moment (q = 2) of the averaged 
box probability P ( q ,  I )  = Ci(C,cRj(l) l$(r)12)4 - h'q-l)Dq, where Q ( h )  is the size I x I 
of the ith box. A power law relation is observed for I = AL in the range 2a 6 I 6 L/2. 
The average over all eigenstates from the energy interval gives a correlation dimension 
( & ) E  = 1.66 * 0.05 which is close to the value of 1.63 reported in [7] for smaller system 
sizes. 

The correlation dimension of the spectral measure, 5 2 ,  which is related to the temporal 
decay [25, 31 of the maximum of a wavepacket (probability of return) built from critical 
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Figure 1. The f (a(q))-dis@ibution function of nitical eigenstales calculated for a system of 
size Lla = 150 and q = *3, *2, hl.5, f l ,  10.8, f0.5, *0.3, 0. The full curve is a fit using 
the panbolic approximation with 00 = 2.19. 

E 

Figure 2. The scaling of the spechal_masure at the mobility edge for a system of size Lla = 100 
from which a correlation exponent Dz = 0.83 f 0.03 is obtained. 

eigenstates was calculated for the same energy interval. This exponent is obtained from the 
scaling relation of the local density of states 

with aE = @ E ( T ) / ( ~ ~ ,  I @ ~ , ( T ) ~ ~ ) ~ ’ * .  The scaling behaviour is shown in figure 2 for 
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q = 2. Here, an exponent 52 = 0.83 rt 0.03 is found which satisfies the relation DZ = 2 4  
proposed previously for the 2d QHE system [3]. These results indicate that the diffusion 
at the mobility edge will be non-Gaussian in the long-time limit. Due to the multifractal 
nature of the spatial amplitude fluctuations of the critical wavefunctions and the behaviour 
of the fractal spectral measure, the diffusion coefficient will not be a constant. A non-trivial 
frequency and wavevector dependence governed by an exponent 4 has been observed in the 
QHE model [ 1, 31 and a similar behaviour was also seen for the symplectic case [7]. 

- 

0.001 0.01 0.1 
Energy [ E  - E'l/V 

Figure 3. The energy correlation Z(E. E') of the entical eigenslales as a function of energy 
s e p d o n  showing a power law relation - IE - with an exponent 4 = 0.35 5 0.05. 

In figure 3 the correlations of the eigenstates close in energy 

Z ( E ,  E') = [tl'E(T)121tl'.E'(T)12 - [ E  - Ell-@ 
P 

(4) 

averaged over small energy intervals are shown for the critical eigenstates. A power law 
relation is observed with 1 = 0.35 10.05. From the above resuIts it is seen that the relation 
4 = d - DZ 113.91 also holds in the 2d symplectic case. 

We should mention that our value for q is compatible with the result for a different 
symplectic model obtained from the calculation of the two-particle spectral function at 
the mobility edge [7]. It is also in accordance with an earlier estimate by Evangelou 
[26], although the corresponding scaling exponent of the localization length. U = 1.6, 
differs considerably from I! = 2.75 obtained by Fastenrath [20, 211 for the Ando model. 
However, to determine 7 from the calculated finite-size scaling variable at the critical 
point, A,, Evangelou used the relation A, = l/(xq/2) which is only within the parabolic 
approximation (Dp = 2 - q(a0 - 2) [24, 141, valid for [ql 5 1) equivalent to a relation 
proposed recently by JanBen [141, Akm = I/(x(ao - d)), relating the typical finite-size 
scaling variable at the critical point, AFLto the multifractal behaviour of the eigenstates. 

We note that our results for (YO, Dz, Dz, and 1 are very close to those obtained for the 
2d QHE model [lo, 31. Although we could not observe any size dependence, the currently 
achieved system sizes do, however, not allow us to exclude the possibility that the values 
actually coincide in the thermodynamic limit, L -+ W. A similar correspondence has 
recently been asserted for the energy level statistics [6] of the critical 3d Anderson model 



Letter to the Editor L285 

with and without a magnetic field. In addition, the critical exponent of the localization 
length was reported to be identical in the two cases [27, 281. If these observations for 3d 
models were correct and if also the values obtained from the multifractal analysis in 2d for 
the quantum Hall systems were indeed the same as those reported above for the symplectic 
disordered systems, then the behaviour at the critical point would primarily be determined 
by the euclidean dimension and not by the symmetry class of the Hamiltonian. 

In conclusion, the multifractal properties of the eleckonic eigenstates at the metal- 
insulator transition of two-dimensional disordered systems with symplectic symmetry have 
been investigated. The f(a)-distribution, the correlation dimensions of the spectral measure 
and the critical eigenstates, and the energy correJations of the wavefunctions were calculated. 
The values obtained for a0 = 2.19 * 0.03, Dz = 0.83 f 0.03, DZ = 1.66 * 0.05, and 
q = 0.35 f 0.05 appear to be independent of system size and satisfy general relations that 
have been proposed previously for the critical states at the metal-insulator transition in other 
disordered systems. 

I gratefully acknowledge helpful discussions with Bodo Huckestein and Martin JanBen. 
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